发布时间:2018-04-20作者:laosun阅读(14985)
利用直方图原理实现图像内容相似度比较、均值哈希实现图像内容相似度比较、汉明距离算法实现图像内容相似度比较
直方图原理实现图像内容相似度比较算法:
import javax.imageio.*; import java.awt.image.*; import java.awt.*; import java.io.*; public class PhotoDigest { public static void main(String[] args) throws Exception { float percent = compare(getData("/Users/sun/Downloads/1.jpg"), getData("/Users/sun/Downloads/2.jpg")); if (percent == 0) { System.out.println("无法比较"); } else { System.out.println("两张图片的相似度为:" + percent + "%"); } } public static int[] getData(String name) { try { BufferedImage img = ImageIO.read(new File(name)); BufferedImage slt = new BufferedImage(100, 100, BufferedImage.TYPE_INT_RGB); slt.getGraphics().drawImage(img, 0, 0, 100, 100, null); // ImageIO.write(slt,"jpeg",new File("slt.jpg")); int[] data = new int[256]; for (int x = 0; x < slt.getWidth(); x++) { for (int y = 0; y < slt.getHeight(); y++) { int rgb = slt.getRGB(x, y); Color myColor = new Color(rgb); int r = myColor.getRed(); int g = myColor.getGreen(); int b = myColor.getBlue(); data[(r + g + b) / 3]++; } } // data 就是所谓图形学当中的直方图的概念 return data; } catch (Exception exception) { System.out.println("有文件没有找到,请检查文件是否存在或路径是否正确"); return null; } } public static float compare(int[] s, int[] t) { try { float result = 0F; for (int i = 0; i < 256; i++) { int abs = Math.abs(s[i] - t[i]); int max = Math.max(s[i], t[i]); result += (1 - ((float) abs / (max == 0 ? 1 : max))); } return (result / 256) * 100; } catch (Exception exception) { return 0; } } }
均值哈希实现图像内容相似度比较算法:
import java.awt.Graphics; import java.awt.Image; import java.awt.color.ColorSpace; import java.awt.image.BufferedImage; import java.awt.image.ColorConvertOp; import java.io.File; import java.io.IOException; import java.util.Arrays; import javax.imageio.ImageIO; /** * 均值哈希实现图像指纹比较 * */ public final class FingerPrint { public static void main(String[] args) { try { FingerPrint fp1 = new FingerPrint(ImageIO.read(new File( "/Users/sun/Downloads/1.jpg"))); FingerPrint fp2 = new FingerPrint(ImageIO.read(new File( "/Users/sun/Downloads/2.jpg"))); System.out.println(fp1.toString(true)); System.out.printf("sim=%f", fp1.compare(fp2)); } catch (IOException e) { e.printStackTrace(); } } /** * 图像指纹的尺寸,将图像resize到指定的尺寸,来计算哈希数组 */ private static final int HASH_SIZE = 16; /** * 保存图像指纹的二值化矩阵 */ private final byte[] binaryzationMatrix; public FingerPrint(byte[] hashValue) { if (hashValue.length != HASH_SIZE * HASH_SIZE) throw new IllegalArgumentException(String.format( "length of hashValue must be %d", HASH_SIZE * HASH_SIZE)); this.binaryzationMatrix = hashValue; } public FingerPrint(String hashValue) { this(toBytes(hashValue)); } public FingerPrint(BufferedImage src) { this(hashValue(src)); } private static byte[] hashValue(BufferedImage src) { BufferedImage hashImage = resize(src, HASH_SIZE, HASH_SIZE); byte[] matrixGray = (byte[]) toGray(hashImage).getData() .getDataElements(0, 0, HASH_SIZE, HASH_SIZE, null); return binaryzation(matrixGray); } /** * 从压缩格式指纹创建{@link FingerPrint}对象 * * @param compactValue * @return */ public static FingerPrint createFromCompact(byte[] compactValue) { return new FingerPrint(uncompact(compactValue)); } public static boolean validHashValue(byte[] hashValue) { if (hashValue.length != HASH_SIZE) return false; for (byte b : hashValue) { if (0 != b && 1 != b) return false; } return true; } public static boolean validHashValue(String hashValue) { if (hashValue.length() != HASH_SIZE) return false; for (int i = 0; i < hashValue.length(); ++i) { if ('0' != hashValue.charAt(i) && '1' != hashValue.charAt(i)) return false; } return true; } public byte[] compact() { return compact(binaryzationMatrix); } /** * 指纹数据按位压缩 * * @param hashValue * @return */ private static byte[] compact(byte[] hashValue) { byte[] result = new byte[(hashValue.length + 7) >> 3]; byte b = 0; for (int i = 0; i < hashValue.length; ++i) { if (0 == (i & 7)) { b = 0; } if (1 == hashValue[i]) { b |= 1 << (i & 7); } else if (hashValue[i] != 0) throw new IllegalArgumentException( "invalid hashValue,every element must be 0 or 1"); if (7 == (i & 7) || i == hashValue.length - 1) { result[i >> 3] = b; } } return result; } /** * 压缩格式的指纹解压缩 * * @param compactValue * @return */ private static byte[] uncompact(byte[] compactValue) { byte[] result = new byte[compactValue.length << 3]; for (int i = 0; i < result.length; ++i) { if ((compactValue[i >> 3] & (1 << (i & 7))) == 0) result[i] = 0; else result[i] = 1; } return result; } /** * 字符串类型的指纹数据转为字节数组 * * @param hashValue * @return */ private static byte[] toBytes(String hashValue) { hashValue = hashValue.replaceAll("\\s", ""); byte[] result = new byte[hashValue.length()]; for (int i = 0; i < result.length; ++i) { char c = hashValue.charAt(i); if ('0' == c) result[i] = 0; else if ('1' == c) result[i] = 1; else throw new IllegalArgumentException("invalid hashValue String"); } return result; } /** * 缩放图像到指定尺寸 * * @param src * @param width * @param height * @return */ private static BufferedImage resize(Image src, int width, int height) { BufferedImage result = new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR); Graphics g = result.getGraphics(); try { g.drawImage( src.getScaledInstance(width, height, Image.SCALE_SMOOTH), 0, 0, null); } finally { g.dispose(); } return result; } /** * 计算均值 * * @param src * @return */ private static int mean(byte[] src) { long sum = 0; // 将数组元素转为无符号整数 for (byte b : src) sum += (long) b & 0xff; return (int) (Math.round((float) sum / src.length)); } /** * 二值化处理 * * @param src * @return */ private static byte[] binaryzation(byte[] src) { byte[] dst = src.clone(); int mean = mean(src); for (int i = 0; i < dst.length; ++i) { // 将数组元素转为无符号整数再比较 dst[i] = (byte) (((int) dst[i] & 0xff) >= mean ? 1 : 0); } return dst; } /** * 转灰度图像 * * @param src * @return */ private static BufferedImage toGray(BufferedImage src) { if (src.getType() == BufferedImage.TYPE_BYTE_GRAY) { return src; } else { // 图像转灰 BufferedImage grayImage = new BufferedImage(src.getWidth(), src.getHeight(), BufferedImage.TYPE_BYTE_GRAY); new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null) .filter(src, grayImage); return grayImage; } } @Override public String toString() { return toString(true); } /** * @param multiLine * 是否分行 * @return */ public String toString(boolean multiLine) { StringBuffer buffer = new StringBuffer(); int count = 0; for (byte b : this.binaryzationMatrix) { buffer.append(0 == b ? '0' : '1'); if (multiLine && ++count % HASH_SIZE == 0) buffer.append('\n'); } return buffer.toString(); } @Override public boolean equals(Object obj) { if (obj instanceof FingerPrint) { return Arrays.equals(this.binaryzationMatrix, ((FingerPrint) obj).binaryzationMatrix); } else return super.equals(obj); } /** * 与指定的压缩格式指纹比较相似度 * * @param compactValue * @return * @see #compare(FingerPrint) */ public float compareCompact(byte[] compactValue) { return compare(createFromCompact(compactValue)); } /** * @param hashValue * @return * @see #compare(FingerPrint) */ public float compare(String hashValue) { return compare(new FingerPrint(hashValue)); } /** * 与指定的指纹比较相似度 * * @param hashValue * @return * @see #compare(FingerPrint) */ public float compare(byte[] hashValue) { return compare(new FingerPrint(hashValue)); } /** * 与指定图像比较相似度 * * @param image2 * @return * @see #compare(FingerPrint) */ public float compare(BufferedImage image2) { return compare(new FingerPrint(image2)); } /** * 比较指纹相似度 * * @param src * @return * @see #compare(byte[], byte[]) */ public float compare(FingerPrint src) { if (src.binaryzationMatrix.length != this.binaryzationMatrix.length) throw new IllegalArgumentException( "length of hashValue is mismatch"); return compare(binaryzationMatrix, src.binaryzationMatrix); } /** * 判断两个数组相似度,数组长度必须一致否则抛出异常 * * @param f1 * @param f2 * @return 返回相似度(0.0~1.0) */ private static float compare(byte[] f1, byte[] f2) { if (f1.length != f2.length) throw new IllegalArgumentException("mismatch FingerPrint length"); int sameCount = 0; for (int i = 0; i < f1.length; ++i) { if (f1[i] == f2[i]) ++sameCount; } return (float) sameCount / f1.length; } public static float compareCompact(byte[] f1, byte[] f2) { return compare(uncompact(f1), uncompact(f2)); } public static float compare(BufferedImage image1, BufferedImage image2) { return new FingerPrint(image1).compare(new FingerPrint(image2)); } }
汉明距离算法实现图像内容相似度比较算法:
import java.awt.Graphics2D; import java.awt.color.ColorSpace; import java.awt.image.BufferedImage; import java.awt.image.ColorConvertOp; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import javax.imageio.ImageIO; /* * pHash-like image hash. * Author: Elliot Shepherd (elliot@jarofworms.com * Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html */ public class ImagePHash { private int size = 32; private int smallerSize = 8; public ImagePHash() { initCoefficients(); } public ImagePHash(int size, int smallerSize) { this.size = size; this.smallerSize = smallerSize; initCoefficients(); } public int distance(String s1, String s2) { int counter = 0; for (int k = 0; k < s1.length(); k++) { if (s1.charAt(k) != s2.charAt(k)) { counter++; } } return counter; } // Returns a 'binary string' (like. 001010111011100010) which is easy to do // a hamming distance on. public String getHash(InputStream is) throws Exception { BufferedImage img = ImageIO.read(is); /* * 1. Reduce size. Like Average Hash, pHash starts with a small image. * However, the image is larger than 8x8; 32x32 is a good size. This is * really done to simplify the DCT computation and not because it is * needed to reduce the high frequencies. */ img = resize(img, size, size); /* * 2. Reduce color. The image is reduced to a grayscale just to further * simplify the number of computations. */ img = grayscale(img); double[][] vals = new double[size][size]; for (int x = 0; x < img.getWidth(); x++) { for (int y = 0; y < img.getHeight(); y++) { vals[x][y] = getBlue(img, x, y); } } /* * 3. Compute the DCT. The DCT separates the image into a collection of * frequencies and scalars. While JPEG uses an 8x8 DCT, this algorithm * uses a 32x32 DCT. */ long start = System.currentTimeMillis(); double[][] dctVals = applyDCT(vals); System.out.println("DCT: " + (System.currentTimeMillis() - start)); /* * 4. Reduce the DCT. This is the magic step. While the DCT is 32x32, * just keep the top-left 8x8. Those represent the lowest frequencies in * the picture. */ /* * 5. Compute the average value. Like the Average Hash, compute the mean * DCT value (using only the 8x8 DCT low-frequency values and excluding * the first term since the DC coefficient can be significantly * different from the other values and will throw off the average). */ double total = 0; for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { total += dctVals[x][y]; } } total -= dctVals[0][0]; double avg = total / (double) ((smallerSize * smallerSize) - 1); /* * 6. Further reduce the DCT. This is the magic step. Set the 64 hash * bits to 0 or 1 depending on whether each of the 64 DCT values is * above or below the average value. The result doesn't tell us the * actual low frequencies; it just tells us the very-rough relative * scale of the frequencies to the mean. The result will not vary as * long as the overall structure of the image remains the same; this can * survive gamma and color histogram adjustments without a problem. */ String hash = ""; for (int x = 0; x < smallerSize; x++) { for (int y = 0; y < smallerSize; y++) { if (x != 0 && y != 0) { hash += (dctVals[x][y] > avg ? "1" : "0"); } } } return hash; } private BufferedImage resize(BufferedImage image, int width, int height) { BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); Graphics2D g = resizedImage.createGraphics(); g.drawImage(image, 0, 0, width, height, null); g.dispose(); return resizedImage; } private ColorConvertOp colorConvert = new ColorConvertOp( ColorSpace.getInstance(ColorSpace.CS_GRAY), null); private BufferedImage grayscale(BufferedImage img) { colorConvert.filter(img, img); return img; } private static int getBlue(BufferedImage img, int x, int y) { return (img.getRGB(x, y)) & 0xff; } // DCT function stolen from // http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java private double[] c; private void initCoefficients() { c = new double[size]; for (int i = 1; i < size; i++) { c[i] = 1; } c[0] = 1 / Math.sqrt(2.0); } private double[][] applyDCT(double[][] f) { int N = size; double[][] F = new double[N][N]; for (int u = 0; u < N; u++) { for (int v = 0; v < N; v++) { double sum = 0.0; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { sum += Math .cos(((2 * i + 1) / (2.0 * N)) * u * Math.PI) * Math.cos(((2 * j + 1) / (2.0 * N)) * v * Math.PI) * (f[i][j]); } } sum *= ((c[u] * c[v]) / 4.0); F[u][v] = sum; } } return F; } public static void main(String[] args) { ImagePHash p = new ImagePHash(); String image1; String image2; try { image1 = p.getHash(new FileInputStream(new File( "/Users/sun/Downloads/1.jpg"))); image2 = p.getHash(new FileInputStream(new File( "/Users/sun/Downloads/11.png"))); System.out.println("1:1 Score is " + p.distance(image1, image2)); } catch (FileNotFoundException e) { e.printStackTrace(); } catch (Exception e) { e.printStackTrace(); } } }
结果说明:汉明距离越大表明图片差异越大,如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
根据Neal Krawetz博士的解释,原理非常简单易懂。我们可以用一个快速算法,就达到基本的效果。
这里的关键技术叫做"感知哈希算法"(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。
下面是一个最简单的实现:
第一步,缩小尺寸。
将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
第二步,简化色彩。
将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
第三步,计算平均值。
计算所有64个像素的灰度平均值。
第四步,比较像素的灰度。
将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
第五步,计算哈希值。
将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。
得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
具体的代码实现,可以参见Wote用python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。
这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。
实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。
版权属于: 技术客
原文地址: https://www.sunjs.com/article/detail/24dd9a9e436e489185430c4c45034d69.html
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。